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Course outline
Thursday 24th: Lecture 1; Lecture 2; Lecture 3; Problems class 1.
Friday 25th: Lecture 4; Problems class 2.

Lecture 1: Convergent and divergent series expansions.
Consider a function y(z), where z € C, which is represented by the following series
expansion centred about z = 0,

y(z) =Y anz". (1.1)
n=0

Here, the series coefficients a,, are constant. Convergence of the series (1.1) can be
established by the ratio test. In examining the ratio of successive terms for large n,
given by lim,, o0 |(ani12"71)/(an2™)], the series converges provided that this quantity
is less than one. Rearranging this then yields the condition |z| < lim, o0 |@n41/an]
for convergence. For a given set of series coefficients, {a,}, the right-hand side of this
constraint is known. The series (1.1) then converges for all values of |z| that satisfy
this constraint. Thus, we define the radius of convergence of this series, p, by

p= lim (1.2)

n—oo

anJrl

We have therefore established that the radius of convergence of series expansion

(1.1) can depend on the value of z. Three interesting cases emerge:

(i) p = oo. The series (1.1) converges for all values of z.

(ii) 0 < p < 0o. The series converges for 0 < |z| < p, and diverges for p < |z|I.
The equality in (1.1) therefore holds only for values of z where the series
converges, and should be replaced with a # sign otherwise.

(iii) p = 0. The series (1.1) diverges for all values of z*.

1.1. An example differential equation.
Consider Airy’s equation,

d?y
This is a linear second-order ODE for the solution y(z). We will solve this equation
by using a convergent series expansion. By assuming that the solution of (1.3) takes
the form y(z) = Y, a,z", we can substitute this into the governing ODE to obtain

2a22° + i [(n+2)(n+ 1)ani2 — an—1]2" = 0. (1.4)

n=1

Tt is significantly more difficult to establish whether the series converges or diverges when |z] = p.
$The case with z = 0 trivially converges since y(2z) = ao.
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The aim is now to solve for the constant coefficients, a,, of the series solution. Since
(1.4) holds for some finite region of z (we are assuming that p > 0), it decouples into a
set of conditions obtained from each order of z. These are given by

2a5 =0, (n+2)(n+1)apts —an—1 =0, (1.5)

for n > 1. The first of these yields as = 0, and the second produces a linear recurrence
relation for a,, in terms of a,,_3. Both of ag and a; are undetermined in this recurrence
relation, which is to be expected for a second-order ODE. The resultant recurrence
relations can be solved analytically to find
= 3T (k+1/3) Bk — 3T(k+2/3) 414
- - 1.6
“OZ T(3k + DI(1/3) " 12 rereorem” 0 10

where I'(k) is the gamma function.
To determine the radius of convergence of solution (1.6), we need to examine the
ratio of successive terms in each of the ag and a; expansions. From

’ (3k +4)(3k + 3)(3k + 2)
el 3(k +4/3)

, (L.7)

we find that p = co and thus the series solution (1.6) converges for all values of z.

N = 50 e
N =100
N =150
y(x) o
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Fic. 1.1. Comparison between a numerical solution to Airy’s equation (1.3) (black line) and

the convergent series solution (1.6), y = Zﬁ;o anz™ for the different values of N = 10, N = 50,
N =100, and N = 150. Here, we have plotted with respect to the real azis, * = Re[z].

We may now implement this convergent series expansion numerically in order to
compare with a numerical solution of the same problem. For the purposes of this
illustration we will take z to be real-valued and then plot the series expansion for an
increasing number of retained coefficients. The series is shown in figure 1.1 when 10, 50,
100, and 150 terms. It is seen that the series solution converges towards the numerical
solution (as expected) as the number of terms calculated is increased. However, this
convergence is very slow. Even with 150 terms, the series is only a good approximation
for —10 < = < 10. Further, there are also severe numerical issues associated with
including further terms in the series because the coefficients become very small, such
as aiso = 3.7233 x 107177,



1.2. Series expansion about z = co.

In the 1850’s and 1860’s, Sir George Gabriel Stokes developed an alternative method
to solve Airy’s equation [1]. Motivated by the poor convergence of the series centred
about z = 0, which we derived in § 1.1, he instead considered a series expansion centred
about z = co (essentially a series expansion in powers of 1/z). The method used to
solve for the series centred about z = oo is very similar to that presented in §1.1,
except that the solution is of Liouville-Green form (i.e. a normal series x ¢*”), and
yields

Cei?? & a De= 32" & a
y(2) = /4 Zo [423/2/3]n + ~1/4 Zo [_423/2/3]71’ (1.8a)

where

_ I(n+45/6)'(n+1/6)
ap = T+ 1) . (1.8b)

Recall that the convergent solution to this problem from § 1.1 is real-valued (when
Im[z] = 0), and decayed for  — oo but contained oscillations as x — —oo. For the
solution in (1.8a) to decay as x — oo, we require C' = 0 and D # 0. However, since
23/2 is imaginary when 2 < 0, the series expansion in (1.8a) must be complex-valued
when C' =0 and D # 0. This is a contradiction to the results of the convergent series.

1
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Fi1c. 1.2. Comparison between a numerical solution to Airy’s equation (1.3) (black line) and the
series solution (1.8a) for N = 1. Here, we have plotted with respect to the real azis, v = Re[z].

By plotting the asymptotic solution (1.8a) against the numerical solution of the
problem, shown dashed in figure 1.2, the resolution to this issue can be obtained. We
see that these constants take different values for x < 0 and = > 0, and are given by

. 1
1 for x <0
—0 <0, ’
c={amr T D= 47rf/ : (1.9)
0 forxz >0, Pyl for x > 0.

This discontinuous change of the constants in solution (1.8a) at z = 0 is known as the
Stokes phenomenon [2]. More generally, it occurs across contours within the complex
plane, z € C, known as Stokes lines. Stokes lines emanate from singularities or branch
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points of the asymptotic series. In this example, there is a singularity in the series
solution at z = 0.
There are three important features of this solution to remark upon:

(1) The radius of convergence of the series solution is zero, and it diverges for
all values of z. While this contradicts our initial assumption that the series
converges for some region of z € C, the series is an asymptotic series under
the limit of z — oo, which means that we should have written ~ rather than
= in (1.8a). Using methods in asymptotic expansions would have yielded the
same series coefficients.

(ii) Unlike the convergent series (1.6), which required a large number of terms
to approximate the numerical solution well (figure 1.1), the divergent series
solution only requires one term to form an excellent approximation (figure 1.2).
Since the series is divergent, comparison will becomes worse as the number
of terms retained increases.

REFERENCES
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Lecture 2: Divergent asymptotic expansions and the Stokes phenomenon.
Consider the solution expansion

y(zie) ~ Y €"yn(2) (2.1)

under the limit of € — 0. By definition, this series is said to be asymptotic if consecutive
terms are smaller than previous terms under the limit of e — 0. That is,

n+1
hnl[eyn+1]::0, (2.2)
€"Yn

or equivalently y, > ey,41.

Condition (2.2) is the key assumption made when deriving solutions to differential
equations in the form of an asymptotic series, and most of the difficulty emerges when
it is violated. For instance, if yo = 1/z and y; = 1/2? then yg > ey; is violated as
z — 0. The asymptotic expansion subsequently reorders as z — 0, and requires the
use of boundary-layer theory and matched asymptotics expansions to resolve. Further,
divergent asymptotic series also reorder. Rather than this reordering occurring at
certain locations for z € C, it occurs as n — oo. There are many different methods
used to resolve this issue, including optimal truncation, series resummation, and
resurgence. The unifying feature across all of these methods is that the expansion
divergence is directly linked to exponentially-small (often called non-perturbative)
terms in the asymptotic expansion that are subdominant to the algebraic expansion
(2.1).

Asymptotic series to singular perturbative problems typically take the form of an
asymptotic transseries,

y(zi6) ~ Y LA (2) + €AV (2) 4 - Je X (2.3)

o
Here, ;(z) are called the singulant functions, and Al )(z) are the amplitude functions.
Both «; and o; are constant, the latter of which are denoted Stokes multipliers as
they change value across Stokes lines. The number of possible exponentials, N, in the
series expansion is problem dependent. For Airy’s equation (1.3), a linear second-order
ODE, there are N = 2 exponentials. For nonlinear problems we often have N = co.
The algebraic expansion (2.1) is a special case with oy = 0 and x1(z) = 0.

2.1. The Stokes phenomenon.
Stokes phenomenon occurs whenever one exponential in the asymptotic transseries
(2.3) reaches peak exponential dominance over another. If this occurs with the
two exponentials e Xi/€ and e~Xi/¢, the result is that the Stokes multiplier of the
subdominant exponential changes value. This change in value may be regarded as an
automorphism of the transseries parameters {o;}, and it occurs across the Stokes line
defined by ;> ,

(Stokes line I;»;) : Im[y; —x;] =0 and Rel[x; —xi] >0, (2.4a)
(Stokes automorphism S;s;) : 0 — 0 + 27T j0;. (2.4b)
In (4.13b) above, the constant 7; ; is known. Note that the automorphism (4.13b)

occurs from Im[x; — x;] < 0 to Im[x; — x;] > 0. Thus, to fully resolve the Stokes
phenomenon for a given problem, we:



(1) Calculate the amplitude functions, Aéz)(z), and the corresponding singulant
functions x;(z). Plot all possible Stokes lines for the problem from condition
(4.13a). If there are N singulants, then the total number of Stokes lines is
given by

N
23 i=N(N-1),

i=1

since for each Stokes line /;~ ;, there is also the Stokes line ;.
(ii) Determine the values of 7; ;. These capture how much of the jth exponential

is seen in the late terms of the ith expansion, and are defined in (2.1) below.
In lecture 3 we obtain 7; ; by solving for the divergence of Ag ) (z) exactly
(which works for some linear problems), and in lecture 4 we obtain 7; ; by
solving for the divergence of Al )(z) under the limit of n — oo (which is more
general and works for nonlinear problems).

(iii) Pick values for the transseries parameters {o1,09,...,0x} in some sector
of z € C. These values come from far-field or behavioural conditions of the
problem.

(iv) Compute every Stokes automorphism to obtain the values that o; takes for
zeCt

The divergence of each expansion in transseries (2.3) typically takes the factorial-
over-power form of

I'n+a; —a;)
(xj(2) = xa(z))Hea e

AW (2) ~ Tl'yjAéj)(Z) as n — oo,

and the Stokes phenomenon is simply a mathematical consequence of this divergence.
In lecture 3 we will find 7; ; by first obtaining an exact solution to Agf )(z), and then
expanding this as n — oco. In lecture 4 we will consider a nonlinear problem where
this approach fails, and the equation governing Ag )(z) must be approximated under
the limit of n — oo, yielding a differential-difference equation. In this latter case, 7; ;
is obtained by matching with a boundary layer.

2.2. Derivation from the Borel transform. ‘
Consider the divergent series expansion A (z, €) ~ Ag)(z) + eAgl)(z) +---. The Borel
transform may be used to express this as a convergent series. We define the forward
and inverse Borel transforms by

(Borel transform) : y(i)(z w) = i w"M (2.5a)
. B ’ ~ F(n + 1) ’ .
. L[~ g,
(Inverse transform) :  A®(z;¢) ~ 7/ y%)(z,w)e*w/édw. (2.5b)
€Jo

TThere are actually several complications that can emerge which require additional steps to
resolve. Firstly, Stokes lines can coincide with one another (which is problem specific) resulting in
a different change for o; in the automorphism. Secondly, there is a concept of higher-order Stokes
phenomenon which is an automorphism acting on the values of 7; ; in (4.13b), rather than the
transseries coefficients o;. This can be generalised to n levels of Stokes phenomenon, where only the
level-1 Stokes phenomenon is resolved above.



The Borel transform (2.5a) may be regarded as a convergent generating function for
each order of the e — 0 asymptotic expansion of A (z;€), and the Stokes phenomenon
will be obtained by studying the asymptotics of the inverse transform (2.5b).

The radius of convergence of the Borel transform (2.5a) will be finite due to
singularities at certain values of w." By using Darboux’s method [1], the behaviour
of yg)(z,w) local to each singularity can be obtained. We focus here only on the
singularity that will induce the I;~; Stokes line, which is given by

iy — o)AV ()
[ (2) = xa(2) = w] ™

(2.6)

Thus, there is a singularity at w = x;(z)—x;(#) in the integrand of the inverse transform
(2.5Db), the position of which is complex-valued and dependent on z. Consider the case
when arg[x; — x;] < 0. In this case, the dominant asymptotics to AW (z;€) may be
obtained from the inverse transform (2.5b) by substituting for the series (2.5a) and
integrating by parts, which yields

AD(ze) ~ AP (2) + €AV (2) + - (2.72)

for arg[x;(z) — xi(2)] < 0. However, if arg[x;(z) — xi(z)] moves through zero and
becomes positive, then the contour from 0 to oo must be deformed for its value to be
continuous. The deformation of the integration contour is depicted in figure 2.1(b).
The result of this is that when arg[x;(z) — xi(z)] > 0, there is a Hankel contour
contribution to the integral, yielding

) . ) T (o — a‘)A(j)(z) e—w/e
AD(zie) ~ AV () +eAD(2) + -+ Tig- 19 0 7§ dw
( ) 0 ( ) 1 ( ) (Xj —xi — w)aj—ai

(2.7b)
for arg[x;(z) — xi(2)] > 0.

(a) \JIm(w] (b) \JIm(w]

= - Re[w] L= L= - Re[w]

o w=yx,(2)—xi(2)

Fi1G. 2.1. (a) The integration contour for the inverse Borel transform (2.5b) is shown in blue.
As the singularity in the integrand crosses the positive real axis, the integration contour must be
deformed, resulting in an additional Hankel contour. This deformation is shown in (b).

By using the integral formula for the reciprocal gamma function,

1 i —z,—t
T02) = %7§(—t) e 'dt,

fAs an analogy, think about the Taylor expansion of (1 —w)~! about w = 0. This series has a
radius of convergence equal to one due to the singularity at w = 1 of the resummed function.
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and substituting for —et = x; — x; — w, the Hankel integral in (2.7b) can be directly
evaluated, and yields

A(j)(z)

AD(z6) ~ A (2) + AP (2) + -+ + 2mim ; LI o= e, (2.8)
€% A

This extra contribution to the asymptotics of A®)(z;¢€) is gained as the Stokes line
is crossed, which we see now is the contour Im[x; — x;] = 0 and Re[x; — xi] > 0
previously given in (4.13a). In multiplying (2.8) by e~ ®g;e~Xi/€ to obtain the extra
contribution to the asymptotics of y(z; €), we see that this extra term is of the form
2miT; joe Y Aéj)(z)e_xf/e. Thus, we have gained an extra component to the jth term
in the asymptotic transseries (2.3), and found that across the Stokes line

4O N AD
o; 07(2)6—&'(2)/6 (N [aj + 27riTi,jai] 0 (Z)e_Xj(z)/e, (2.9)
€ €%

which is the Stokes phenomenon.

The above derivation only informs us of the component gained via Stokes phe-
nomenon, i.e. the automorphism (4.13b), rather than the smooth manner in which it
occurs across the Stokes line f. In fact, the behaviour is smooth and takes the form of
an error function [2],

arg[x; —xil

——r A(j)
0+ Vi 0 / VIGle o=tz gy A0 o orre, (2.10)
oo €%

such that the width of the Stokes line is arg[y; — x;] = O(e!/?). This means that
when arg[x; — x:] = 0 and we are on the Stokes line itself, half the total contribution,
miT; 04, has been obtained.

REFERENCES
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A., 422(1862):7-21, 1989.

tAnd while it relied upon a; — a; > 0, the same result emerges for a; — a; < 0.
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Lecture 3: Linear ODE example (Airy’s equation).
Consider Airy’s equation,

== —2y=0, (3.1a)

which is obtained from (1.3) by taking z ~ e~2/3z. Further, we enforce the far-field
behavioural condition

el/6 _2:3/2

as |z| = oo and arg[z] = 0 (i.e. far along the real axis).
In posing the solution in the form of an asymptotic transseries, we have from
(1.8a) that

| o1 [x~ € T(n+5/6)T(n+1/6)] 202
y<Z»€>“e—1/6[,;Jz1/4r(n+1)<—4z3/2/3>”]e (3.2)
- 3.2

+

02 [w= € T(n+5/6)T(n+1/6)] 2:3/2
i [;21/4 T(n + 1)(42372/3)n e 3 ase— 0.

Thus, a; = az = —1/6" and with N = 2, we have the two singulants x;(z) = 22%/2/3
and x2(z) = —223/2/3. There will be two Stokes lines in total generated from these,
l1>2 and l3~1, defined by

l1s9: Im[—42%/2/3] =0 and Re[-42%/2/3] >0, (3.3a)
los1:  Im[4z%/2/3] =0 and Re[42%/2/3] > 0. (3.3b)
Across each of these, we have the respective Stokes automorphisms
Si>2: 09— 09 + 27iT) 207,
Sosq 01— 01 + 27iTe 102.

It remains to find values for 71 2, 72,1, as well as the Stokes multipliers o; and o9
in a certain sector of z € C. We begin with 712 and 75 ;. First, we note that since
~v(5/6)7(1/6) = 2, the leading-order amplitude functions from (3.2) are

2
/4"

2

1
AE) )(Z) = 14

and AP(z) = (3.4)

Then, we use the large-n behaviour I'(n + «) ~ I'(n)n® to calculate the n — oo limit
of Agll)(z) and Agf)(z), yielding

1 2 r 1 2 r
AV ()~ — . 2r ) and AP (z)~ — . il & (3.5)
21 2V (x2 —x1)® \211; 2 (= xe)n
437 (2)

T1,2 Aé2)(z) T2,1

Thus, we have that 71 5 =21 = (27r)*1. The respective Stokes automorphisms are
then

Sl>2 : 0'2*—)0'24*10’1, 82>1 : 0'1*—)0'14*10’2. (36)

I accidentally used an example with a; —a; = 0. Don’t look at what happens with the Hankel
integral in this case (I think that the Borel singularity is logarithmic here).
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Next, we use the far-field condition (3.1b) to obtain values for oy and os when
|z| = oo and arg[z] = 0. By taking the same limit in the transseries expansion (3.2),
we have that

— 253/2 _ _223/2
y(z;€) ~ 092met/ 027 V™5 4 oy 2met/ 07 /e e

Thus, oy = 1/(47%/?) and o2 = 0. The Stokes line structure for this problem is
shown in figure 3.1. While there is a Stokes line, l5~1, along the positive real axis, the

JJm(z]

lis2 . —0
01 = gp3/2,02 =

— 1 — i
01 = 17372,92 = ;372

l2>1 T Re[z]

— 1 —
01 = 1r372,02 =0

p—

l2>1

MO PouRIg

Fic. 3.1. Stokes lines for the Airy equation are shown in blue.

respective automorphism Ss~1 does not change any Stokes multipliers because oo = 0
here. Tt is the I Stokes line that results in oscillatory behaviour of y(z;€) along the
negative real axis. Across l1s2, the Stokes multiplier oo changes value from zero to
i/(4m%/?).

3.1. The Airy functions of the first and second kind.

Airy’s equation permits two linearly independent solutions. These are the Airy
functions of the first kind, Ai(z), and the second kind Bi(z), defined for z € C by

ir/3

1 ooe 1
Ai(z) = 31 /ooe—iﬂ/3 exp <3t3 - zt) dt, (3.7a)
in/3 —in/3
1 ooe 1 1 ooe 1
Bi(z) = —/ exp  ot° — 2t |dt + 7/ exp [ =t* — 2t )dt.  (3.7b)
27 J_ o 3 27 J_ o 3

Note that the limits of integration indicate the line in the complex plane along which
the t-integration occurs. We will now also revert back to the |z| — oo limit of lecture
1, rather than the ¢ — 0 limit used in this lecture.

The Airy function of the first kind, Ai(z), satisfies the far-field condition (3.1b) as
so we have already derived the asymptotic behaviour of this function. The following
asymptotic formula for Ai(z) are exponentially-accurate, and differ depending on the
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sector of z € C.

> 2z3/2
4773/2 1/4 [Z_;J 423/2/3 ] 3 0 <arglz] < 27/3,
i 223/2
3/2,1 [Z ] 3
4 / /4 vt (- 423/2/3
. = 223/2
Ai(z) ~ 8773/2 1/4 [Z 423/2/3 :| ' arg[z] = 2m/3, (3.8)
n:O

oo

223/2
7T3/2 174 [Z z3/2/3 ] ’

i an 2,3/2
+ 4Am3/21/4 [2—:0 (42'3/2/3)"} ¢ 2m/8 < argle] <

where a, = I'(n + 5/6)I'(n + 1/6)/T'(n + 1). These types of asymptotic formulas
are often seen in special function theory [1]. Often, the behaviour is split up into
additional sectors which corresponds to a switching in dominance of two exponentials,
rather than the Stokes automorphism of the transseries coefficients.

REFERENCES
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Lecture 4: Nonlinear differential equations.

In lecture 3 we considered Airy’s equation, which was a linear ODE with two different
exponentials in the asymptotic transseries. We began by determining the singulant
functions, y;(z), which were used to isolate the Stokes lines across which the Stokes
phenomenon occurs.

For nonlinear problems, the asymptotic solution still typically takes the form of a
transseries expansion that displays the Stokes phenomenon. However, deriving each
component of this (the singulants x;(z) and corresponding amplitude functions Al (2))
becomes more difficult. For the example studied in this lecture, the solution along the
real axis will be dominated by the algebraic expansion y(z;€) ~ yo(z) + ey (2) + - - -.
Only by first studying the singular points of yo(z) can the divergence of y,,(z) for
n — 0o be obtained. The Stokes phenomenon can then be studied from this divergence
through the methods introduced in lecture 2.

Consider the fifth-order KAV equation,

ou ou  u A%u
- +6u—+

ot e Yo T o =0 (4.1)

for the solution u(z,t;€). In fluid dynamics, this equation models the depth, u, of
free-surface water waves over topography, when the ratio of surface wavelength to
fluid depth is large. The fifth-order term arises due to the inclusion of surface tension
at the fluid-air interface. Solutions which travel without a change in speed (such
as travelling periodic or solitary surface waves) may by studied by considering the
solution to be a function of x — ct, where c is the speed of the travelling wave. This
yields the fifth-order ODE

3 5
(Gu_c)%_'_au 0°u

oz T om om0 (4.2)

for the solution u(x;€). We will now study solutions of this under the limit of € — 0.
As € — 0, the solution along the real-axis is dominated by an O(e”) component. Thus,
we begin by taking!

o0

u(wse) ~ Y € un (x). (4.3)

n=0

The leading-order solution satisfies the equation (6ug — c)uf, + uj’ = 0, and is
given by the well-known KdV soliton,

uo(z) = gsechQ (fx) (4.4)

An equation governing u,(z) for n > 1 is obtained at O(¢") in (4.2), and is given by

wl 'y = cul, 4+ Y Gugl, ,, = 0. (4.5)

m=0

The solution to this will diverge as n — oo on account of singularities in the leading-
order solution (4.4). These singularities occur in the analytic continuation of the real

fTechnically, ¢ should also have been expanded as € — 0, but we’re ignoring this subtlety here.
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variable z, so we now consdier the problem to be a function of z € C. Note that
sech(z) is singular whenever cosh(z*) = 0, which occurs along the imaginary axis at

* = 4in/2, z* = £3ir/2, and so forth. In taking ¢ = 1, we then have the local
singular behaviour

ug(2) ~ —(z — 2'2)72 as z — z; = (2k + 1)E

; (4.6)

for integer k. Note that the equation governing u;(z) at O(e) involves the dominant
balance u{’ ~ —u{"" near this singular point, which results in the singular behaviour

up(2) ~ —6(z — z;) "% as z — z}.

4.1. Expansion divergence.
This pattern will continue, such that the singular behaviour of the nth term in the
asymptotic series is given by u,(2) = O([z — 2] 72" ~?) as z — 2;. Additionally, the
nth term in the series will diverge factorially due to differentiation of the growing
singularity. This divergence will take the factorial-over-power form of

Z Ag( 2n L@n +ax) as n — 0o, (4.7

2n+ak
k=—0o0

with each singularity of ug(z) at z — 2z}, generating a separate component in the sum
above. Note that the divergence is of the form I'(2n) rather than I'(n) in order to
satisfy the dominant balance of u!/ ~ —u/"""| as n — oo.

To obtain solutions for the singulants xx(z) and amplitude functions Ag(z), we
substitute (4.7) into the O(€™) equation and solve under the limit of n — oco. By

differentiating ansatz (4.7), we find that

oo

'2n+ai+3 r(2n+ ap +2
UZ/(Z) ~ Z |:(_X;c)3A/€ ( 2ntar+3 ) + |:3X;CX;CIA1€ + S(X;C)QA;C} 2n+aj+2 ) +
k=—00 Xk Xk
= L(2n + ay + 3) L(2n + ay + 2)
W)~ Y [(—X;PAkW + 1006 A+ 5000 A =t 4 |
k=—oc0 k k

where the omitted terms are lower-order in the limit of n — co. In the O(e™) equation,
the singulant functions xy () will be obtained from O(T'(2n+ oy +3)/x;""**?) terms
and the amplitude functions Ax(z) from O(T'(2n 4 ay, 4+ 2)/x2" T 2) terms. Since
wl, = O(T(2n+ap+1) /X2 T, only !/ (2) and u/", (2) feed into the two dominant

orders as n — co. We therefore obtain the equations
Xe(2) = &i,  AL(2) =0, (4.8)
which when integrated along with the boundary condition x(z}) = 0 yield

Xk(2) = £i(z — z1),  Ar(z) = Ag, (4.9)
where A is an unknown constant.

4.2. Inner solution.
To obtain values for Ay and «ay, we need to match the divergent solution (4.7) with
an inner solution at a boundary layer centred about z = 2. The constant aj may
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be obtained quickly by noting that the singularity of w,(z) must be of the order
(z—z;)72"72 as z — 2}, yielding

o = 2. (4.10)

The process to obtain Ay is more complicated, and requires matching all orders of the
outer € expansion with a boundary layer solution at z = z;;. This work is omitted here.

4.3. Stokes phenomenon.
Now that the singulant functions are known from (4.9), the Stokes lines may be
obtained. The two singularities closest to the real axis’ are
mi !
20=— and z';=-——. 4.11
We will focus only on the four singulant functions generated by these two singular
points:

Xou (2) = i (z _ 7;) and y_1, (2) = =i (z _ 7;1) (4.12)

Note that we have introduced the xj, notation above. The four singulants are then
X045 Xo_s X—14, and x_1_. Since the divergent asymptotic expansion (4.3) in this
example had y; = 0, the Stokes line conditions become

(Stokes line I;»;) : Im[y;] =0 and Re[x;] >0, (4.13a)
(Stokes automorphism S;s;) @ 0 — 0 + 27T j0;. (4.13b)

In the example class, we will interpret these results further and plot possible
solution profiles for the fifth-order KdV equation. The key message is that nonlinear
problems can have a countably infinite set of singulant functions, and that determining
the value of 7; ; is significantly harder and requires inner-outer matching.

TThe other singularities will generate Stokes lines that intersect the real-axis, but will produce a
subdominant exponential.
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