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1 Transience and recurrence

Definition 1.1. A sequence of random variables (Xn)n≥0 taking values in a space E is called a

Markov chain if for all x0, . . . , xn ∈ E such that P(X0 = x0, . . . , Xn−1 = xn−1) > 0 we have

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1) .

In other words, the future of the process is independent of the past given the present.

For an event A we write Pi(A) to denote P(A | X0 = i).

A Markov chain is defined by its transition matrix P given by

P (i, j) = P(X1 = j | X0 = i) ∀ i, j ∈ E.

Exercise 1.2. Check that

Pi(Xn = j) = Pn(i, j),

where Pn is the n-th power of the matrix P .

We will also write pi,j(n) or pn(i, j) for P
n(i, j).

Lemma 1.3. Suppose X0 = i. The number of visits to i, i.e. Vi =
∑∞

n=0 1(Xn = i), is a geometric

random variable with parameter Pi(Ti < ∞), where Ti = inf{n ≥ 1 : Xn = i}.

Proof. Define the successive visits to i via T
(1)
i = Ti and inductively for j ≥ 2

T
(j)
i = inf{n > T

(j−1)
i : Xn = i}.

Then by the definition of a Markov chain we have

P
(
T
(j)
i < ∞

∣∣∣ T (j−1)
i < ∞

)
= Pi(Ti < ∞) .

This shows that the number of visits has the geometric distribution with parameter Pi(Ti < ∞).

Definition 1.4. A Markov chain is called irreducible if for all x, y ∈ E there exists n ≥ 0 such

that Pn(x, y) > 0.

An irreducible Markov chain is called recurrent if for all i we have Pi(Ti < ∞) = 1. Otherwise, it

is called transient.

Exercise 1.5. Suppose that X is an irreducible Markov chain. Suppose that there exists i such

that Pi(Ti < ∞) = 1. Show that for all j we also have Pj(Tj < ∞) = 1.

From now on, all the Markov chains under consideration will be irreducible unless otherwise spec-

ified.

Theorem 1.6. Let X be a Markov chain and i ∈ E. Then X is recurrent if and only if

∞∑
n=0

pn(i, i) = ∞.
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Proof. Let Vi be the total number of visits to i. Then Ei[Vi] =
∑∞

n=0 pn(i, i). The statement

follows from Lemma 1.3.

Let G = (V,E) be a connected graph, which may be infinite or finite. A simple random walk on G

is a Markov chain evolving on the vertices V with transition matrix given by

P (i, j) =
1

deg(i)
,

for i and j neighbours, i.e. joined by an edge.

Theorem 1.7 (Polya). Let G = Zd. Then simple random walk on G is recurrent if and only if

d ≤ 2.

Proof. We start with d = 1. Then we have

p2n(0, 0) =

(
2n

n

)
· 1

22n
∼ c√

n
,

for a positive constant c using Stirling’s formula. Invoking Theorem 1.6 gives the recurrence for

d = 1.

For d = 2, we project the walk on the two diagonals and resize the lattice by dividing by
√
2. Then

each component becomes an independent simple random walk on each diagonal and the result

follows using what we showed for d = 1, i.e.

∞∑
n=0

pn(0, 0) ∼
∞∑
n=1

c

n
= ∞.

For d = 3 we have

p2n(0, 0) =
∑

i,j,k≥0
i+j+k=n

(2n)!

(i!j!k!)2
·
(
1

6

)2n

=

(
2n

n

)
·
(
1

2

)2n ∑
i,j,k≥0

i+j+k=n

(
n

i j k

)2

·
(
1

3

)2n

.

Now notice that by considering all possible ways of placing n balls into three boxes we get

∑
i,j,k≥0

i+j+k=n

(
n

i j k

)
·
(
1

3

)n

= 1.

By a simple counting argument we obtain when n = 3m for all i, j, k with i+ j + k = n(
n

i j k

)
≤

(
n

m m m

)
.

Using that p6m(0, 0) ≥ (1/6)2p6m−2(0, 0) and p6m(0, 0) ≥ (1/6)4p6m−4(0, 0) for all m we deduce

using again Stirling’s formula ∑
n

p2n(0, 0) ≤
∑
n

c

n3/2
< ∞,

which shows that the walk is transient.
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Exercise 1.8. Show that simple random walk on Zd for all d ≥ 4 is transient.

2 Invariant distribution

Let E be a countable (infinite or finite) state space and let π be a probability distribution on E.

We call π an invariant distribution if πP = P . This means that if X0 ∼ π, then Xn ∼ π for all n.

A Markov chain X is called reversible if for all N when X0 ∼ π, then (X0, . . . , XN ) has the same

distribution as (XN , . . . , X0).

Exercise 2.1. Show that a chain with matrix P and invariant distribution π is reversible if and

only if for all x, y we have

π(x)P (x, y) = π(y)P (y, x).

Exercise 2.2. Show that if X is reversible, then for all a, b, c we have

Ea[τb] + Eb[τc] + Ec[τa] = Ea[τc] + Ec[τb] + Eb[τa]

Exercise 2.3. Let X be a simple symmetric random walk on Zn. Find its invariant distribution.

Is the chain reversible?

Let X be a biased random walk on Zn with transition probabilities P (i, (i + 1) mod n) = 2/3 and

P (i, (i− 1) mod n) = 1/3. Find its invariant distribution. Is the chain reversible?

Consider next the biased random walk on {0, . . . , n}, i.e. with transition probabilities P (i, i+ 1) =

2/3 = 1− P (i, i− 1). Is this chain reversible?

3 Random walks on graphs

In this section we are following closely [2, Chapter 9].

Let G = (V,E) be a finite connected graph with set of vertices V and set of edges E. We endow it

with non-negative numbers (c(e))e∈E that we call conductances. We write c(x, y) = c({x, y}) and
clearly c(x, y) = c(y, x). The reciprocal r(e) = 1/c(e) is called the resistance of the edge e.

We now consider the Markov chain on the nodes of G with transition matrix

P (x, y) =
c(x, y)

c(x)
,

where c(x) =
∑

y:y∼x c(x, y). This process is called the weighted random walk on G with edge

weights (c(e))e.

This process is reversible with respect to π(x) = c(x)/cG, where cG =
∑

x∈V c(x), since

π(x)P (x, y) =
c(x)

cG
· c(x, y)

c(x)
=

c(x, y)

cG
= π(y)P (y, x)

and π is stationary for P , i.e. πP = π.
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When c(e) = 1 for all edges e, we call the Markov chain with transition matrix P a simple random

walk on G. In this case

P (x, y) =

{
1

d(x) if y ∼ x,

0 otherwise.

It is not hard to show that every reversible Markov chain is a weighted random walk on a graph.

Indeed, suppose that P is a transition matrix which is reversible with respect to the stationary

distribution π. Then we declare {x, y} an edge if P (x, y) > 0. Reversibility implies that P (y, x) > 0

if P (x, y) > 0, and hence this is well-defined. We define conductances on the edges by setting

c(x, y) = π(x)P (x, y). Again by reversibility this is symmetric and with this choice of weights we

get π(x) = c(x). The study of reversible Markov chains is thus equivalent to the study of random

walks on weighted graphs.

Let now P be a transition matrix which is irreducible with state space Ω. (We do not assume that

P is reversible.)

A function h : Ω → R is called harmonic for P at the vertex x if

h(x) =
∑
y∈Ω

P (x, y)h(y).

For a subset B ⊆ Ω we define the hitting time of B by

τB = min{t ≥ 0 : Xt ∈ B}.

Proposition 3.1. Let X be an irreducible Markov chain with transition matrix P and let B ⊆ Ω.

Let f : B → R be a function defined on B. Then the function h(x) = Ex[f(XτB )] is the unique

extension h : Ω → R of f such that h(x) = f(x) for all x ∈ B and h is harmonic for P at all

x ∈ Ω \B.

Proof. Clearly h(x) = f(x) for all x ∈ B. By conditioning on the first step of the Markov chain

we get for x /∈ B

h(x) =
∑
y∈Ω

P (x, y)Ex[f(XτB ) | X1 = y] =
∑
y

P (x, y)Ey[f(XτB )] =
∑
y

P (x, y)h(y),

where for the second equality we used the Markov property.

We now turn to show uniqueness. Let h′ be another function satisfying the same conditions as h.

Then the function g = h − h′ is harmonic on Ω \ B and g = 0 on B. We first show that g ≤ 0.

Consider the set

A =

{
x : g(x) = max

y∈Ω
g(y)

}
.

If x ∈ A and x ∈ B, then we are done. Suppose next that x /∈ B and let y be such that P (x, y) > 0.

If g(y) < g(x), then harmonicity of g on Ω \B implies that

g(x) =
∑
z∈Ω

g(z)P (x, z) = g(y)P (x, y) +
∑
z ̸=y

P (x, z)g(z) < max
y∈Ω

g(y),

which is clearly a contradiction. Hence it follows that g(y) = maxz g(z), which means that y ∈ A.
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By irreducibility we continue in the same way and we finally get that g(x) = 0, since we eventually

get to the boundary B. Hence this proves that max g = 0. Similarly, we can prove that min g = 0.

So we deduce that g = 0.

3.1 Electrical networks

The goal of this section is to explain the connection between random walks and electrical networks.

Again here G = (V,E) will be a finite connected graph with conductances (c(e))e on the edges. We

distinguish two vertices a and b that will be the source and the sink respectively.

Definition 3.2. A flow θ on G is a function defined on oriented edges e⃗ = (x, y) of E satisfying

θ(x, y) = −θ(y, x).

The divergence of the flow θ is defined to be div θ(x) =
∑

y∼x θ(x, y).

We note that by the antisymmetric property of θ we get∑
x

div θ(x) =
∑

(x,y)∈E

(θ(x, y) + θ(y, x)) = 0.

Definition 3.3. A flow θ from a to b is a flow such that

• div θ(x) = 0 ∀x /∈ {a, b} (“flow in equals flow out” – Kirchoff’s node law)

• div θ(a) ≥ 0.

The strength of a flow θ from a to b is defined to be ∥θ∥ := div θ(a). A unit flow is a flow with

∥θ∥ = 1.

We note that div θ(b) = −divθ(a).

A voltage W is a harmonic function on V \ {a, b}. By Proposition 3.1 a voltage always exists and

is uniquely determined by its boundary values W (a) and W (b).

Given a voltage W on G we define the current flow I on oriented edges via

I(x, y) =
W (x)−W (y)

r(x, y)
= c(x, y)(W (x)−W (y)).

Exercise: Check it is a flow and then prove that the unit current flow is unique.

By the definition we immediately see that the current flow satisfies Ohm’s law:

r(x, y)I(x, y) = W (x)−W (y).

The current flow also satisfies the cycle law: if the oriented edges e⃗1, . . . , e⃗n form an oriented cycle,

then
n∑

i=1

r(e⃗i)I(e⃗i) = 0.
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Proposition 3.4. Let I be a current and θ a flow from a to z satisfying the cycle law for any

cycle. If ∥θ∥ = ∥I∥, then θ = I.

Proof. Consider the function f = θ − I. Then since θ and I are flows with the same strength, it

follows that f satisfies Kirchoff’s node law at all nodes and the cycle law. Suppose that θ ̸= I. Then

without loss of generality, there must exist an edge e⃗1 such that f(e⃗1) > 0. Since
∑

y∼x f(x, y) = 0,

we get that there must exist an edge e⃗2 to which e⃗1 leads such that f(e⃗2) > 0. Continuing in

this way we get a sequence of oriented edges with positive value of f . Since the graph is finite, at

some point this sequence of edges should revisit a point. This then violates the cycle law. Hence

θ = I.

3.2 Effective resistance

Let W0 be the voltage with W0(a) = 1 and W0(z) = 0. By the uniqueness of harmonic functions,

we obtain that any other voltage W is given by

W (x) = (W (a)−W (z))W0(x) +W (z).

We call I0 the current flow associated with W0. Note that by the definition of the current flow, its

strength is given by

∥I∥ =
∑
x∼a

W (a)−W (x)

r(a, x)
= (W (a)−W (z)) ∥I0∥ .

We thus see that the ratio
W (a)−W (z)

∥I∥
is independent of W . We define this to be the effective resistance

Reff(a, z) :=
W (a)−W (z)

∥I∥

and the reciprocal is called the effective conductance, Ceff(a, z).

Why is it called effective resistance? Suppose that we wanted to replace the whole network by

single edge joining a and z with resistance Reff(a, z). Then if we apply the same voltage at a and

z in both networks, then the same amount of current would flow through.

We are now ready to state the connection between random walks and electrical networks.

We define τ+x = min{t ≥ 1 : Xt = x}.

Proposition 3.5. Let X be a reversible chain on a finite state space. For any a, z ∈ Ω we have

Pa

(
τz < τ+a

)
=

1

c(a)Reff(a, z)
.

Proof. The function f(x) = Px(τz < τa) is a harmonic function on Ω \ {a, z} and f(a) = 0 and

f(z) = 1. So from Proposition 3.1 we get that f has to be equal to the function

h(x) =
W (a)−W (x)

W (a)−W (z)
,
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where W is a voltage, since they are both harmonic with the same boundary values. Therefore, we

obtain

Pa

(
τz < τ+a

)
=

∑
x

P (a, x)Px(τz < τa) =
∑
x∼a

c(a, x)

c(a)
· W (a)−W (x)

W (a)−W (z)
.

By the definition of the current flow, the above sum is equal to∑
x∼a I(a, x)

c(a)(W (a)−W (z))
=

1

c(a)Reff(a, z)

and this proves the proposition.

Definition 3.6. The Green’s function for a random walk stopped at a stopping time τ is defined

to be

Gτ (a, x) := Ea

[ ∞∑
t=0

1(Xt = x, τ > t)

]
.

Lemma 3.7. Let X be a reversible Markov chain. Then for all a, z we have

Gτz(a, a) = c(a)Reff(a, z).

Proof. The number of visits to a before the first hitting time of z has a geometric distribution

with parameter Pa(τz < τ+a ). The statement follows from Proposition 3.5.

There are some ways of simplifying a network without changing quantities of interest.

Conductances in parallel add: let e1 and e2 be edges sharing the same endvertices. Then we

can replace both edges by a single edge of conductance equal to the sum of the conductances. Then

the same current will flow through and the same voltage difference will be applied. To see it, check

Kirchoff’s and Ohm’s laws with I(e⃗) = I(e⃗1) + I(e⃗2).

Resistances in series add: if v ∈ V \ {a, z} is a node of degree 2 with neighbours v1 and v2,

we could replace the edges (v, v1) and (v, v2) by a single edge (v1, v2) of resistance r(v1, v2) =

r(v, v1) + r(v, v2). To see it, check Kirchoff’s and Ohm’s laws with I(v1, v2) = I(v1, v) = I(v, v2)

and the same as before everywhere else.

Gluing: If two vertices have the same voltage, we can glue them to a single vertex, while keeping

all existing edges. Since current never flows between vertices with the same voltage, potentials and

currents remain unchanged.

Example 3.8. Let a and b be two vertices on a finite connected tree T . Then the effective resistance

Reff(a, b) is equal to the distance on the tree between a and b.

Definition 3.9. Let θ be a flow on a finite connected graph G. We define its energy by

E(θ) =
∑
e

(θ(e))2r(e),

where the sum is taken over all unoriented edges e. (Note that since θ is antisymmetric, we did not

need to take direction on e.)
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The following theorem gives an equivalent definition of effective resistance as the minimal energy

over all flows of unit strength from a to z.

Theorem 3.10 (Thomson’s principle). Let G be a finite connected graph with edge conductances

(c(e))e. For all a and z we have

Reff(a, z) = inf{E(θ) : θ is a unit flow from a to z}.

The unique minimiser above is the unit current flow from a to z.

Proof. We follow [1].

Let i be the unit current flow from a to z associated to the potential φ.

We start by showing that

Reff(a, z) = E(i).

Using that i is a flow from a to z and Ohm’s law we have

E(i) = 1

2

∑
u,v
u∼v

i(u, v)2r(u, v) =
1

2

∑
u,v
u∼v

i(u, v)(φ(u)− φ(v)) = φ(a)− φ(z) = Reff(a, z).

Let j be another flow from a to z of unit strength. The goal is to show that E(j) ≥ E(i).

We define k = j − i. Then this is a flow of 0 strength. So we now get

E(j) =
∑
e

(j(e))2r(e) =
∑
e

(i(e) + k(e))2r(e)

=
∑
e

(i(e))2r(e) +
∑
e

(k(e))2r(e) + 2
∑
e

k(e)i(e)r(e)

= E(i) + E(k) + 2
∑
e

k(e)i(e)r(e).

We now show that ∑
e

k(e)i(e)r(e) = 0.

Since i is the unit current flow associated with φ, for e = (x, y) it satisfies

i(x, y) =
φ(x)− φ(y)

r(x, y)
.

Substituting this above we obtain∑
e

k(e)i(e)r(e) =
1

2
·
∑
x

∑
y∼x

(φ(x)− φ(y))k(x, y) =
1

2
·
∑
x

∑
y∼x

φ(x)k(x, y) +
1

2
·
∑
x

∑
y∼x

φ(x)k(x, y),

where for the last equality we used the antisymmetric property of k. Since k is a flow of 0 strength,

we get that both these sums are equal to 0. Therefore this proves that

E(j) ≥ E(i)
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with equality if and only if E(k) = 0 which is equivalent to k = 0.

Theorem 3.11 (Rayleigh monotonicity principle). The effective resistance is a monotone in-

creasing function as a function of the component resistances, i.e. if (r(e))e and (r′(e))e satisfy

r(e) ≤ r′(e) for all e, then

Reff(a, z; r) ≤ Reff(a, z; r
′).

Proof. Let i and i′ be the unit current flows associated to the resistances r(e) and r′(e) respectively.

Then by Thomson’s principle we get

Reff(a, z; r) =
∑
e

(i(e))2r(e) ≤
∑
e

(i′(e))2r(e),

where the inequality follows, since the energy is minimised by the unit current flow i. Using the

assumption on the resistances we now obtain∑
e

(i′(e))2r(e) ≤
∑
e

(i′(e))2r′(e) = Reff(a, z; r
′)

and this concludes the proof.

Corollary 3.12. Let G be a finite connected graph. Suppose we add an edge which is not adjacent

to a. Then this increases the escape probability Pa(τz < τ+a ).

Proof. Recall from Proposition 3.5 that

Pa

(
τz < τ+a

)
=

1

c(a)Reff(a, z)
.

Adding an edge means that we decrease the resistance of the edge from ∞ to a finite number.

Hence from Rayleigh’s monotonicity principle we get that the effective resistance will decrease.

Corollary 3.13. The operation of gluing vertices together cannot increase the effective resistance.

We now present a nice technique due to Nash and Williams to obtain lower bounds on effective

resistances.

Definition 3.14. We call a set of edges Π an edge–cutset separating a from z if every path from a

to z uses an edge of Π.

Proposition 3.15 (Nash-Williams inequality). If (Πk) are disjoint edge-cutsets which separate a

from z, then

Reff(a, z) ≥
∑
k

∑
e∈Πk

c(e)

−1

.

Proof. By Thomson’s principle it suffices to prove that for any flow θ from a to z of unit strength

we have ∑
e

(θ(e))2r(e) ≥
∑
k

∑
e∈Πk

c(e)

−1

.
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Since the sets Πk are disjoint, we get∑
e

(θ(e))2r(e) ≥
∑
k

∑
e∈Πk

(θ(e))2r(e).

By the Cauchy-Schwarz inequality we now get∑
e∈Πk

c(e)

 ·

∑
e∈Πk

r(e)(θ(e))2

 ≥

∑
e∈Πk

√
c(e)

√
r(e)|θ(e)|

2

=

∑
e∈Πk

|θ(e)|

2

.

But since the sets Πk are cutsets separating a from z and θ has unit strength, this last sum is at

least 1. Rearranging completes the proof.

Proposition 3.16. Let a = (1, 1) and z = (n, n) be the opposite corners of the box Bn = [1, n]2∩Z2.

Then

Reff(a, z) ≥
log(n− 1)

2
.

Remark 3.17. The effective resistance between a and z is also upper bounded by log n. To

prove it one defines a flow and shows that its energy is at most log n. For more details see [2,

Proposition 9.5].

Proof of Proposition 3.16. Let Πk = {(v, u) ∈ Bn : ∥v∥∞ = k and ∥u∥∞ = k − 1}. Then (Πk)

are disjoint edge-cutsets separating a from z. By counting the number of edges we get |Πk| = 2(k−1)

and since c(e) = 1 for all edges e we get

Reff(a, z) ≥
n∑

k=2

1

2(k − 1)
≥ log(n− 1)

2

and this completes the proof.

Lemma 3.18. Let X be an irreducible Markov chain on a finite state space. Let τ be a stopping

time satisfying E[τ ] < ∞ and Pa(Xτ = a) = 1 for some a in the state space. Then for all x we

have

Gτ (a, x) = Ea[τ ] · π(x).

Proposition 3.19 (Commute time identity). Let X be a reversible Markov chain on a finite state

space. Then for all a, b we have

Ea[τa,b] = Ea[τb] + Eb[τa] = c(G) ·Reff(a, b),

where c(G) = 2
∑

e c(e).

Proof. The stopping time τa,b which is the first time the walk comes back to a after having visited b

satisfies Pa

(
Xτa,b = a

)
= 1. Also note that we only visit a before time τb, i.e.

Gτa,b(a, a) = Gτb(a, a) = c(a)Reff(a, b),

where the last equality follows from Proposition 3.5. We can now apply the previous lemma to

finish the proof.
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Remark 3.20. The previous identity immediately gives us that the effective resistance satisfies

the triangle inequality. Hence the effective resistance defines a metric on the graph G (the other

two properties are trivially satisfied).

3.3 Transience vs recurrence

So far we have been focusing on finite state spaces. In this section we will see how we can use the

electrical network point of view to determine transience and recurrence properties of graphs.

Let G = (V,E) be a countable graph and let 0 be a distinguished point. Let Gk = (Vk, Ek) be an

exhaustion of G by finite graphs, i.e. Vn ⊆ Vn+1 and En contains all edges of E with endpoints

in Vn for all n, 0 ∈ Vn for all n and ∪nVn = V .

For every n we construct a graph G∗
n by gluing all the points of V \ Vn into a single point zn. We

now define

Reff(0,∞) = lim
n→∞

Reff(0, zn;G
∗
n).

Check by Rayleigh’s monotonicity principle that this limit does exist and is independent of the

choice of exhaustion. We thus have

P0

(
τ+0 = ∞

)
= lim

n→∞
P0

(
τzn < τ+0

)
= lim

n→∞

1

c(0)Reff(0, zn;G∗
n)

=
1

c(0)Reff(0,∞)
. (3.1)

We can define a flow from 0 to ∞ on an infinite graph as an antisymmetric function on the edges

with divθ(x) = 0 for all x ̸= 0.

Proposition 3.21. Let G be a countable connected weighted graph with conductances (c(e))e and

let 0 be a distinguished vertex.

(a) A random walk on G is recurrent if and only if Reff(0,∞) = ∞.

(b) A random walk on G is transient if and only if there exists a unit flow i from 0 to ∞ of finite

energy E(i) =
∑

e(i(e))
2r(e) < ∞.

Proof. (a) The first part follows directly from (3.1). If the walk is recurrent, then

P0

(
τ+0 = ∞

)
= 0,

and hence Reff(0,∞) = ∞ and vice versa.

(b) For the second part let Gn be an exhaustion of G by finite graphs. Then by definition

Reff(0,∞) = lim
n→∞

Reff(0, zn).

Let in be the unit current flow from 0 to zn on the graph Gn and let vn be the corresponding

voltage. Then by Thomson’s principle we get

Reff(0, zn) = E(in).
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Suppose now that there exists a unit flow θ from 0 to ∞ of finite energy. We call θn the restriction

of θ to the graph Gn. Then θn is a unit flow from a to zn in G∗
n. Applying Thomson’s principle we

obtain

E(in) ≤ E(θn) ≤ E(θ) < ∞.

Therefore we get

Reff(0,∞) = lim
n→∞

E(in) < ∞,

which implies that the walk is transient from the first part.

Suppose now that the walk is transient. Then Reff(0,∞) < ∞ from the first part. We want to

construct a unit flow from 0 to∞ of finite energy. Since Reff(0,∞) < ∞ we get that limn→∞ E(in) <
∞, so there exists M > 0 such that E(in) ≤ M for all n.

We now start a random walk from 0 and call Yn(x) the number of visits to x up until it hits zn.

We also call Y (x) the total number of visits to x. It is clear that Yn(x) ↑ Y (x) as n → ∞, and

hence by monotone convergence we get

lim
n→∞

E0[Yn(x)] ↑ E0[Y (x)] .

Since the walk is assumed to be transient, we have E0[Y (x)] < ∞. It is not hard to check that the

function Gτzn (0, x)/c(x) is a harmonic function with value 0 at zn, and it is equal to vn(x)−vn(zn).

(Use reversibility and same proof as in Proposition 3.1). So we get

lim
n→∞

c(x)(vn(x)− vn(zn)) = c(x)v(x)

for some function v which is finite. Therefore, we can define

i(x, y) = c(x, y)(v(x)− v(y)) = lim
n→∞

c(x, y)(vn(x)− vn(y)).

Since E(in) ≤ M for all n using dominated convergence one can show that i is a unit flow from 0

to ∞ of finite energy (Check!).

Corollary 3.22. If G ⊆ G′ and G′ is recurrent, then G is also recurrent. If G is transient, then

G′ is also transient.

Corollary 3.23. Simple random walk is recurrent on Z2 and transient on Zd for all d ≥ 3.

Proof. For d = 2 we construct a new graph in which for each k we identify all vertices at distance k

from 0. By the series/parallel law we see that

Reff(0, ∂Λn) ≥
n−1∑
i=1

1

8i− 4
.

Therefore, we get that

Reff(0, n) ≥ c log n → ∞ as n → ∞.

For d = 3 we are going to construct a flow of finite energy. To each directed edge of Z3 we attach

an orthogonal unit square intersecting e at its midpoint me. We now define the absolute value of
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θ(e⃗) to be the area of the radial projection of this square onto the sphere of radius 1/4 centred at

the origin. We take θ(e⃗) with positive sign if e⃗ points in the same direction as the radial vector

from 0 to me and negative otherwise. By considering the projections of all faces of the unit cube

centred at a lattice point, we can see that θ satisfies Kirchoff’s node law at all vertices except for 0

(Check!). Hence θ is a flow from 0 to ∞ in Z3. Its energy is given by

E(θ) ≤
∑
n

c1n
2 ·

( c2
n2

)2
< ∞,

and hence this proves transience.

An alternative proof goes via embedding a binary tree with resistance between edges from level

n− 1 to n equal to ρn for a suitable ρ > 0. Then the effective resistance of this tree is given by

Reff(0,∞) =
∞∑
n=1

(ρ
2

)n
.

Taking ρ < 2 makes it finite.

We now want to embed this tree in Z3 in such a way that a vertex at distance n−1 and a neighbour

at distance n are separated by a path of length ρn.

The surface of a ball of radius k in R3 is of order k2, so in order to be able to accommodate this

tree in Z3 we need

(ρn)2 ≥ 2n,

which then gives ρ >
√
2. This then gives that the effective resistance from 0 to ∞ in Z3 is bounded

by the effective resistance of the tree, and hence it is finite.

This idea has been used to show that random walk on the infinite component of supercritical

percolation cluster is transient in dimensions d ≥ 3 (see Grimmett, Kesten and Zhang (1993)).

3.4 Spanning trees

Definition 3.24. Let G be a finite connected graph. A spanning tree of G is a subgraph that is a

tree (no cycles) and which contains all the vertices of G.

Let G be a finite connected graph and let T be the set of spanning trees of G. We pick T uniformly

at random from T . We call T a uniform spanning tree (UST).

We will prove that T has the property of negative association, i.e.

Theorem 3.25. Let G = (V,E) be a finite graph. Let f, g ∈ E with f ̸= g. Let T be a UST. Then

P(f ∈ T | g ∈ T ) ≤ P(f ∈ T ) .

In order to prove this theorem we are first going to establish a connection between spanning trees

and electrical networks.

Let N (s, a, b, t) be the set of spanning trees of G with the property that the unique path from s

to t passes along the edge (a, b) in the direction from a to b. We write N(s, a, b, t) = |N (s, a, b, t)|.

14



Let N be the total number of spanning trees of G. We then have the following theorem:

Theorem 3.26. The function

i(a, b) =
N(s, a, b, t)−N(s, b, a, t)

N

for all (a, b) ∈ E defines a unit flow from s to t satisfying Kirchoff’s laws.

Remark 3.27. The above expression for i(a, b) is also equal to

i(a, b) = P(T ∈ N (s, a, b, t))− P(T ∈ N (s, b, a, t)) .

Exactly the same proof as below would work if G is a weighted graph. In this case we would define

the weight of a tree to be

w(T ) =
∏
e∈T

c(e)

and we would set

N∗ =
∑
T∈T

w(T ) and N∗(s, a, b, t) =
∑

T∈N (s,a,b,t)

w(T ).

Then Theorem 3.26 would still be valid with

i∗(a, b) =
N ∗(s, a, b, t)−N ∗(s, b, a, t)

N∗

for all edges (a, b). The negative association theorem would also be true in this case, i.e. when a

tree T is picked with probability proportional to its weight.

Proof of Theorem 3.26. It is obvious from definition that i is an antisymmetric function. We

next check that it satisfies Kirchoff’s node law, i.e. for all a /∈ {s, t} we have∑
x∼a

i(a, x) = 0.

We now count the contribution of each spanning tree T to the sum above. We now consider the

unique path from s to t in this spanning tree. If a is a vertex on this path, then there are two

edges on the path with endpoint a that contribute to the sum. The edge going into a and the one

going out of a. The first one will contribute −1/N and the second one 1/N . Now if a is not on

the path, then there is no contribution to the sum from T . Hence the overall contribution of T is

−1/N + 1/N = 0 and this proves Kirchoff’s node law.

We now check that it satisfies the cycle law. Let v1, . . . , vn, vn+1 = v1 constitute a cycle C. We will

show that

n∑
i=1

i(vi, vi+1) = 0. (3.2)

To do this we will work with bushes instead of trees. We define an s/t bush to be a forest consisting

of exactly two trees Ts and Tt such that s ∈ Ts and t ∈ Tt. Let e = (a, b) be an edge. We
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define B(s, a, b, t) as the set of s/t bushes with a ∈ Ts and b ∈ Tt.

We now claim that |B(s, a, b, t)| = N(s, a, b, t). Indeed, for every bush in B(s, a, b, t) by adding the

edge e we obtain a spanning tree of N (s, a, b, t). Also for every spanning tree T ∈ N (s, a, b, t) by

removing the edge e we obtain a bush in B(s, a, b, t).

So instead of counting the contribution of each spanning tree to the sum in (3.2) we look at bushes.

Let B be an s/t bush. Then B makes a contribution to i(a, b) of 1/N if B ∈ B(s, a, b, t), −1/N

if B ∈ B(s, b, a, t) and 0 otherwise.

So in total an s/t bush B contributes (F+ − F−)/N , where F+ is the number of pairs (vj , vj+1) so

that B ∈ B(s, vj , vj+1, t) and similarly for F−.

But since C is a cycle, if there is a pair (vj , vj+1) in F+, then there must be a pair (vi, vi+1) in F−.

Therefore we get F+ = F− and hence the total contribution of B is 0.

Finally we need to check that i is a unit flow, i.e.∑
x∼s

i(s, x) = 1.

First we note that N(s, x, s, t) = 0 for all x ∼ s. Every spanning tree must contain a path from s

to t, and hence this gives that ∑
x∼s

N(s, s, x, t) = N

and concludes the proof.

Proof of Theorem 3.25. We consider G as a network with every edge having conductance 1. Let

e = (s, t) be an edge. Then from Theorem 3.26 we get that i is a unit current flow from s to t and

i(s, t) =
N(s, s, t, t)

N
,

where N(s, s, t, t) is the number of spanning trees that use the edge (s, t). Hence

N(s, s, t, t)

N
= P(e ∈ T ) .

Since the network has unit conductances, we get that

i(s, t) = φ(s)− φ(t),

where φ is the potential associated to the unit current i. Therefore the effective resistance between s

and t is given by

Reff(s, t) = i(s, t) = P(e ∈ T ) .

Let e and g be distinct edges of G. We write G.g for the graph obtained by gluing both endpoints of

g to a single vertex. In this way we obtain a one to one correspondence between spanning trees of G

containing g and spanning trees of G.g. Therefore, P(e ∈ T | g ∈ T ) is the proportion of spanning

trees of G.g containing e. So from the above

P(f ∈ T | g ∈ T ) = Reff(s, t;G.g).
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Gluing the two endpoints of g decreases the effective resistance by Rayleigh’s principle, and hence

Reff(s, t;G.g) ≤ Reff(s, t;G),

which is exactly the statement of the theorem.

Definition 3.28. Let G be a finite connected graph. We write F for the set of forests of G (subsets

of G that do not contain cycles). Let F be a forest picked uniformly at random among all forests

in F . We refer to it as USF.

Conjecture 3.29. For f, g ∈ E with f ̸= g the USF satisfies

P(f ∈ F | g ∈ F ) ≤ P(f ∈ F ) .

There is a computer aided proof (Grimmett and Winkler) which shows that for graphs on 8 or

fewer vertices this conjecture is true.

Theorem 3.30 (Foster’s theorem). Let G be a finite connected network on n vertices with conduc-

tances (c(e)) on the edges. Then ∑
e∈E

c(e)Reff(e) = n− 1.

Proof. Note that if T is a UST in G, then
∑

e∈E P(e ∈ T ) = n − 1. Using that P(e ∈ T ) =

c(e)Reff(e) concludes the proof.
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