
Statistical inference for SIS stochastic model: MLE
and MH Tutorial in R

Dr Panayiota Touloupou

July 15, 2025

Abstract

Welcome to this R tutorial on fitting the Susceptible-Infected-Susceptible (SIS)
model, considering it as a stochastic epidemic process based on the Binomial sam-
pling scheme that have seen in our lectures. In this tutorial we will use two statis-
tical methods: Maximum Likelihood Estimation (MLE) and Metropolis-Hastings
(MH). This tutorial is designed for students new to R and will guide you through
the process step-by-step.

1 Getting started with R (for students new to R)

R is a programming language and free software environment for statistical computing
and graphics.

1.1 Install R and RStudio

We assume you don’t yet have R on your computer. To get started, you will need to
install two pieces of software:

• R, the actual programming language.

– R has a homepage, http://r-project.org/, but the software itself is located
for download on the CRAN, which you can find at http://cran.r-project.
org/.

– Chose your operating system (Macintosh, Windows, Linux or Unix) and select
to install the most recent version.

• RStudio (you must have R installed to use RStudio), for working with R.

– RStudio is simply an interface used to interact with R.

– Install RStudio from http://rstudio.org.

1.2 RStudio interface (Brief Overview)

The RStudio screen is divided into 4 windows:

1

http://r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://rstudio.org

• Bottom left: console window (also called command window). This is the most
important window since it is the active bit, where you can communicate directly
with R. Here you can type simple commands after the “ > ” prompt and R will
then execute your command. It is also where your non-graphical results appear.

• Top left: editor window (also called script window). Collections of commands
(scripts) that can be edited and saved. Each script is basically just a text file where
you can write longer sections of code. Also this area is a place where you can view
datasets.

• Top right: environment and history window. In the environment window (also
called workspace window) you can see what is in R’s memory, i.e. a list of data
and variables, which contain values that R has been told to save from previous
commands. The history window shows a history of commands that have been
typed on the console.

• Bottom right: files/plots/packages/help window. Here you can do everything else
- open files, look at and manipulate plots, install and load packages or use the help
function and read help files.

1.3 Basic R syntax

Let’s try some basic commands. Type these into the console and press Enter (or into
editor window and press the button Run).

� �
1 # This is a comment. R ignores anything after a ’#’ on a line.

2

3 # Assigning values to variables

4 x <- 10

5 y = 5 # ’ = ’ also works for assignment , but ’<-’ is preferred in R

6 print(x + y)

7

8 # Vectors (ordered collections of values of the same type)

9 my_vector <- c(1, 2, 3, 4, 5) # ’c()’ combines values into a vector

10 print(my_vector)

11 print(my_vector * 2)

12 print(sum(my_vector))

13

14 # Functions

15 my_function <- function(a, b) {

16 result <- a * b

17 return(result)

18 }

19 print(my_function(x, y))

20

21 # Data frames (like tables or spreadsheets)

22 my_data <- data.frame(

23 Name = c("Alice", "Bob", "Charlie"),

24 Age = c(25, 30, 22),

25 City = c("NY", "LA", "Chicago")

26)

27 print(my_data)

28 print(my_data$Age) # Accessing a column by name

29 print(my_data[1,]) # Accessing the first row
 	
2

1.4 Installing and loading packages

R’s power comes from its vast collection of packages. Packages are collections of func-
tions, data, and compiled code in a well-defined format, designed to extend R’s capa-
bilities. Think of them as add-ons that provide specialized tools. With the standard R
installation, most common packages are installed. At some point in the future if you
want to use some functions that are not in the ordinary R installation, there is a good
chance that there is a package that will fulfill your needs.

� �
1 # Install packages (only need to do this once per R installation)

2 install.packages("ggplot2") # For nice plots

3 install.packages("coda") # For MCMC diagnostics

4

5 # Load packages (need to do this every time you start a new R session

and want to use them)

6 library(ggplot2)

7 library(coda)
 	
1.5 Basic plotting

Visualizing data is crucial in statistics and modelling. R has built-in plotting functions,
and packages like ggplot2 offer more advanced and aesthetically pleasing options.

� �
1 # Simple plot using R’s base plotting system

2 # ’plot() ’ is a versatile function , ’type = "l"’ means draw lines.

3 # ’main ’, ’xlab ’, ’ylab ’ are for setting the title and axis labels.

4 plot(my_vector , type = "l", main = "My Simple Line Plot",

5 xlab = "Index", ylab = "Value")
 	
2 The stochastic SIS model

The SIS model is an epidemic model where individuals can be in one of two states:
Susceptible (S) or Infected (I). Infected individuals recover and immediately become sus-
ceptible again (no immunity).

Unlike deterministic models that describe average behavior with continuous equations,
stochastic models incorporate randomness, reflecting that events (like infections or recov-
eries) happen probabilistically rather than with fixed rates. This is especially important
in smaller populations where random fluctuations can significantly impact the epidemic
trajectory.

2.1 Model events and probabilities

In this specific stochastic SIS model, we consider two types of events occurring at each
discrete time step (e.g., daily, weekly):

1. Number of new infections (Xt): This is the number of susceptible individuals
who become infected during the current time step.

3

• The number of new infections Xt is drawn from a Binomial distribution: Xt ∼
Binomial(St, pinf).

• The probability of infection for a single susceptible individual, pinf, is given by:

1− e−
βIt
N .

• A higher β or more It leads to a higher chance of infection.

2. Number of new recoveries (Yt): This is the number of infected individuals who
recover and return to the susceptible state during the current time step.

• The number of new recoveries Yt is drawn from a Binomial distribution: Yt ∼
Binomial(It, prec).

• The probability of recovery for a single infected individual, prec, is given by:
1− e−γ.

• A higher γ means individuals recover faster.

Where:

• St and It are the number of susceptible and infected individuals at time t.

• N = St + It is the total population size (assumed constant throughout the simula-
tion).

• β is the transmission rate (a positive value).

• γ is the recovery rate (a positive value).

2.2 Implementing the stochastic SIS model in R

Now, let’s translate these probabilistic rules into an R function. This function will simu-
late the SIS model step-by-step over a given time period.

Note that for the SIS model, calculating the likelihood based only on the total number of
susceptible or infected individuals at each time point is not sufficient. We need additional
information. This is because individuals can recover and return to the susceptible state.
If we only observe St or It, we cannot tell whether a change in S (or I) is due to a new
infection or a recovery.

For example, if S decreases, it could be due to an infection; but if I also decreases while
S increases, it could be a recovery. Without explicitly tracking the number of new in-
fections (new inf) and recoveries (new rec) at each time step, the likelihood function
cannot correctly attribute the changes to the underlying processes. Therefore, we need
to modify our simulation function (compared to the one we used in lectures) to return
new inf history and new rec history to provide this crucial information for the likeli-
hood calculation.

� �
1 # Define the Stochastic SIS model simulation function

2 # This function takes:

3 # N: Total population size

4 # beta: Transmission rate

4

5 # gamma: Recovery rate

6 # I0: Initial number of infected individuals

7 # T: Total number of time steps to simulate

8

9 simulate_SIS <- function(N, beta , gamma , I0, T) {

10 # Initialize vectors to store the number of Susceptible (S)

11 # and Infected (I) individuals

12 S <- numeric(T)

13 I <- numeric(T)

14

15 # Initialize vectors to store the *number of new infections* and

16 # *new recoveries* that occur at each time step. These will be

17 # crucial for calculating the likelihood function.

18 new_inf_history <- numeric(T)

19 new_rec_history <- numeric(T)

20

21 # Set initial conditions for S and I at time t=0

22 S[1] <- N - I0

23 I[1] <- I0

24 new_inf_history [1] <- 0 # No new events at time 0

25 new_rec_history [1] <- 0 # No new events at time 0

26

27 # Loop through each time step from t=1 to T-1

28 for (t in 1:(T-1)) {

29 # Calculate the probability of infection for a susceptible

30 # individual based on the current number of infected individuals

31 p_inf <- 1 - exp(-beta*I[t]/N)

32

33 # Calculate the probability of recovery for an infected individual

34 p_rec <- 1 - exp(-gamma)

35

36 # Simulate number of events in this time step using binomial

37 # distribution

38 # rbinom(n, size , prob) generates n random values from a binomial

39 # distribution size is the number of trials , prob is the

40 # probability of success on each trial

41 new_inf <- rbinom(1, S[t], p_inf)

42 new_rec <- rbinom(1, I[t], p_rec)

43

44 # Store the simulated number of events for this time step

45 new_inf_history[t+1] <- new_inf

46 new_rec_history[t+1] <- new_rec

47

48 # Update the number of Susceptible and Infected individuals for the

49 # next time step (t+1)

50 # S decreases by new infections and increases by new recoveries

51 S[t + 1] <- S[t] - new_inf + new_rec

52 # I increases by new infections and decreases by new recoveries

53 I[t + 1] <- I[t] + new_inf - new_rec

54 }

55 # Return a data frame

56 return(data.frame(time = 0:(T-1), S = S, I = I,

57 new_inf_obs = new_inf_history , new_rec_obs = new_rec_history))

58 }
 	

5

2.3 Simulating the stochastic SIS model

Let’s set some parameters and initial conditions and simulate the model over time.

� �
1 # Set a seed for reproducibility of stochastic results.

2 # This ensures that if you run the code multiple times with the

3 # same seed , you will get the exact same sequence of random

4 # numbers , making your results reproducible.

5 set.seed (3)

6

7 # Simulate data using the ’simulate_SIS ’ function.

8 # N: Total population size

9 # beta: True transmission rate

10 # gamma: True recovery rate

11 # I0: Initial number of infected individuals

12 # T: Total number of time steps (e.g., days) for the simulation

13 SISdata <- simulate_SIS(N = 1000, beta = 0.3, gamma = 0.1, I0 = 10,

14 T = 150)

15

16 # View the first few rows of the simulation output.

17 head(SISdata)

18

19 # Plotting the simulation results

20 plot(SISdata$time , SISdata$I, type = "l", col = "blue",

21 ylab = "Number of individuals", xlab = "Time", ylim = c(0, 1000))

22 lines(SISdata$time , SISdata$S, col = "green")

23

24 # Add legend

25 legend("topright", legend = c("Infectious", "Susceptible"),

26 lty = c(1, 1), col = c("blue", "green"))
 	
2.4 Student activity:

• Observe variability: Run the simulation code several times. How do the individ-
ual simulation paths differ, even with the same parameters? This is the essence of
stochasticity!

• Experiment with parameters: Change beta and gamma values in the simulation
code. How do they influence the average behavior (e.g., the peak number of infected
individuals, the endemic equilibrium) and the variability of the epidemic?

• Change initial conditions: Vary I0 (initial infected). Does it affect the long-term
behavior or the initial spread? What happens if you start with very few infected
individuals (e.g., I0 = 1)?

• Change population size N: Does changing N (while keeping I0 proportional or
constant) alter the magnitude of stochastic fluctuations? Comment: In smaller
populations, stochastic effects are often more pronounced. Why do you think this
is the case? Consider what happens when counts become very small.

6

3 Maximum Likelihood Estimation (MLE) for stochas-

tic SIS

Maximum Likelihood Estimation (MLE) is a widely used statistical method for estimat-
ing the parameters of a model. The core idea is to find the parameter values that make
the observed data most “likely” to have occurred under the assumed model, i.e. the
values that maximize the likelihood function (which is the probability of observing the
given data under the model).

To test our MLE approach, we first need some “observed” data. In a real-world scenario,
this would be actual epidemic data (e.g., daily reported cases). For this tutorial, we will
generate synthetic data from our stochastic SIS model using known “true” parameters.
We then pretend we don’t know these true parameters and use MLE to try and recover
them. The stochastic nature of the model itself will introduce the “noise” or variability
that we would typically see in real data.

3.1 Generating Synthetic Data

To test our MLE approach, we’ll first generate some “observed” data from our stochastic
SIS model. The stochastic nature itself will provide the “noise”.

� �
1 # True parameters (these are what we want to estimate)

2 true_beta <- 0.3

3 true_gamma <- 0.1

4

5 # Initial conditions and time for data generation

6 N_data <- 1000

7 I0_data <- 5

8 S0_data <- N_data - I0_data

9 T_data <- 150

10

11 # Simulate the true SIS stochastic model to generate observed data

12 set.seed (123) # For reproducibility

13 observed_data <- simulate_SIS(N = N_data , beta = true_beta ,

14 gamma = true_gamma , I0 = I0_data , T = T_data)
 	
3.2 Defining the log likelihood function for SIS

The likelihood of observing a specific number of new infections (Xt) at time t is given by a
Binomial distribution with parameters St and pinf (probability of infection). Similarly, for
new recoveries (Yt), it’s a Binomial distribution with parameters It and prec (probability
of recovery).

The total log-likelihood is the sum of the log-likelihood of all observed events across all
time steps.

� �
1 # Define the log -likelihood Function for the SIS model

2 # This function takes:

3 # params: A vector of parameters (e.g., c(beta , gamma))

7

4 # data: The observed data.

5

6 loglik_SIS <- function(params , data) {

7 beta = params [1]

8 gamma = params [2]

9

10 # Ensure parameters are valid (e.g., positive).

11 # If any parameter is non -positive , return -Inf for the

12 # log -likelihood.

13 # This tells the optimizer that these parameters are invalid.

14 if (beta <= 0 || gamma <= 0) {

15 return(-Inf)

16 }

17

18 loglik <- 0 # Initialize the total log -likelihood to zero

19 # Calculate the total population size from the initial states

20 N <- data$S[1] + data$I[1]
21

22 # Loop through each time step in the observed data

23 for (t in 1:(nrow(data) - 1)) {

24

25 # Get the number of Susceptible and Infected individuals

26 # at time t and t+1

27 St <- data$S[t]
28 It <- data$I[t]
29

30 # Get the observed number of new infections and new recoveries

31 # that occurred between time t and time t+1. These come directly

32 # from our observed data.

33 new_inf <- data$new_inf_obs[t + 1] # Events observed at t+1,

34 # from state at t

35 new_rec <- data$new_rec_obs[t + 1] # Events observed at t+1, from

36 # state at t

37

38 # Calculate probabilities

39 p_inf <- 1 - exp(-beta*It/N)

40 p_rec <- 1 - exp(-gamma)

41

42 # Avoid probabilities of exactly 0 or 1, which can cause log(0) or

43 # log(1-1) issues in hte dbinom function.

44 # We clip them to be slightly away from the boundaries.

45 p_inf <- min(max(p_inf , 1e-10), 1 - 1e-10)

46 p_rec <- min(max(p_rec , 1e-10), 1 - 1e-10)

47

48 # Add log -likelihood contribution for this step

49 # dbinom(x, size , prob , log = TRUE) gives the log of the

50 # binomial probability mass function.

51 loglik <- loglik +

52 dbinom(new_inf , St , p_inf , log = TRUE) +

53 dbinom(new_rec , It , p_rec , log = TRUE)

54 }

55 return(loglik) # Return the total log -likelihood

56 }
 	

8

3.3 Performing MLE using optim

R’s optim function is a powerful general-purpose optimization tool. It attempts to find
the set of parameters that minimize a given function. In our case, it will maximize the
log-likelihood by using control = list(fnscale = -1), thereby finding the parameters
that maximize the likelihood of our observed data. Write ?optim in console to find more
details.

� �
1 ?optim

2

3 # Set Initial guesses for parameters

4 # These are the starting points for the optimizer ’s search.

5 initial_params <- c(beta = 0.2, gamma = 0.05)

6

7 # Run the optimization using ’optim () ’.

8 # ’par ’: The initial guesses for the parameters.

9 # ’fn ’: The function to be optimized (our log -likelihood function).

10 # ’data ’: Our simulated ’SISdata ’ that contains the observed S, I,

11 # new_inf_obs , new_rec_obs.

12 # ’control = list(fnscale = -1) ’: This is crucial! It tells ’optim ’

13 # to maximize ’fn’ instead of minimizing it.

14 mle_result <- optim(par = initial_params ,

15 fn = loglik_SIS , data = observed_data ,

16 control = list(fnscale = -1))

17 print("MLE Results (initial run):")

18 print(mle_result)

19 # Look for ’convergence = 0’ which indicates successful convergence.

20 # ’par ’ will give you the estimated parameter values.

21 # ’value ’ is the maximum log -likelihood found.

22

23 # Extract estimated parameters

24 estimated_beta_mle <- mle_result$par[1]
25 estimated_gamma_mle <- mle_result$par [2]
26

27 cat("\nEstimated Beta (MLE):", estimated_beta_mle , "\n")

28 cat("Estimated Gamma (MLE):", estimated_gamma_mle , "\n")

29 cat("True Beta:", true_beta , "\n")

30 cat("True Gamma:", true_gamma , "\n")
 	
3.4 Repeated MLE estimation and variability

In the previous section, you performed MLE once. However, because our data is gener-
ated from a stochastic model, each time you simulate data, you’ll get a slightly different
trajectory. This means that if you run the MLE process on different simulated datasets,
you’ll get slightly different parameter estimates.

Let’s explore this variability by repeating the data simulation and MLE estimation pro-
cess multiple times.

� �
1 # Define the number of times to repeat the MLE process

2 num_repetitions <- 25

3

4 # Create empty vectors to store the estimated beta and gamma from

9

5 # each repetition

6 estimated_betas <- numeric(num_repetitions)

7 estimated_gammas <- numeric(num_repetitions)

8

9 # Set the fixed parameters for data generation for this exercise

10 fixed_N <- 1000

11 fixed_I0 <- 10

12 fixed_T <- 150

13 fixed_true_beta <- 0.3

14 fixed_true_gamma <- 0.1

15

16 # Loop to repeat the simulation and MLE estimation

17 for (i in 1:num_repetitions) {

18 # Set a unique seed for each repetition to get different stochastic

19 # data realizations

20 set.seed (100 + i)

21

22 # Simulate new SIS data for this repetition

23 current_SISdata <- simulate_SIS(N = fixed_N, beta = fixed_true_beta ,

24 gamma = fixed_true_gamma , I0 = fixed_I0, T = fixed_T)

25

26 # Run MLE for the current simulated data

27 # Use the same initial guesses and bounds as before

28 current_mle_result <- optim(par = initial_params ,

29 fn = loglik_SIS , data = current_SISdata ,

30 control = list(fnscale = -1))

31

32 # Store the estimated parameters

33 estimated_betas[i] <- current_mle_result$par[1]
34 estimated_gammas[i] <- current_mle_result$par[2]
35

36 }

37

38 # Now , visualize the distribution of your 25 estimates using boxplots.

39 # Boxplots are great for showing the median , quartiles , and outliers

40 # of a distribution.

41 # Set up a 1x2 plotting layout

42 par(mfrow = c(1, 2), mar = c(4, 4, 2, 1))

43

44 # Boxplot for estimated Beta values

45 boxplot(estimated_betas , main = "Distribution of Estimated Beta",

46 ylab = "Estimated Beta", col = "lightblue", border = "black")

47 # Add a line for the true beta value

48 abline(h = fixed_true_beta , col = "red", lwd = 2, lty = 2)

49

50 # Boxplot for estimated Gamma values

51 boxplot(estimated_gammas , main = "Distribution of Estimated Gamma",

52 ylab = "Estimated Gamma", col = "lightgreen", border = "black")

53 # Add a line for the true gamma value

54 abline(h = fixed_true_gamma , col = "red", lwd = 2, lty = 2)

55

56 # Reset plotting layout

57 par(mfrow = c(1, 1))
 	
3.5 Student Activities for MLE:

• Execute the “Repeated MLE Estimation and Boxplots” code block.

10

• Observe the boxplots:

– Where is the median (the line inside the box) of your boxplots located relative
to the true parameter values (red dashed line)?

– How wide are the boxes? This indicates the interquartile range (middle 50%
of your estimates).

– Are there any “outliers” (points beyond the whiskers)?

– Comment: What does the spread of the boxplots tell you about the precision
of your MLE estimates for this stochastic model? How does this relate to the
concept of statistical uncertainty?

• Vary num repetitions: Try increasing num repetitions: (e.g., to 100 or 500).
Does the distribution of estimates change? Does it become more concentrated
around the true value?

• Vary N (Population Size): Change N (e.g., to 100, 1000, 10000) when generating the
data, then re-run the “Repeated MLE Estimation and Boxplots” section.

Comment: How does increasing the population size (N) affect the variability
(spread) of your boxplots? Does more data generally lead to more precise esti-
mates for stochastic models?

• Vary I0 (Initial Infected): Change I0 (e.g., to 1, 50, 100) when generating the data,
then re-run the “Repeated MLE Estimation and Boxplots” section.

Comment: How does the initial number of infected individuals affect the estima-
tion? Is it harder to estimate parameters if I0 is very small (e.g., leading to early
extinction of the epidemic in some stochastic runs)?

4 Metropolis-Hastings (MH) for stochastic SIS

While MLE provides a single “best” point estimate for parameters, it doesn’t directly
tell us about the uncertainty around those estimates. Metropolis-Hastings (MH) is a
Markov Chain Monte Carlo (MCMC) algorithm that allows us to sample from complex
probability distributions, particularly the posterior distribution in Bayesian inference.
Instead of a single estimate, MH gives us a distribution of plausible parameter values,
which is incredibly valuable for understanding uncertainty.

4.1 Introduction to Bayesian Inference (Recap)

• Prior distribution p(θ): Our beliefs about the parameters (θ = (β, γ)) before
seeing the data.

• Likelihood function p(Data|θ): The probability of observing the data given the
parameters (same as in MLE, but now based on the stochastic model).

• Posterior distribution p(θ|Data): Our updated beliefs about the parameters
after seeing the data. It’s proportional to Prior × Likelihood.

The MH algorithm constructs a Markov chain whose stationary distribution is the target
posterior distribution. By running the chain for a long time, the samples generated will
approximate samples from the posterior.

11

4.2 Implementing the MH Algorithm

The core idea of MH is to propose a new set of parameters, calculate an acceptance ratio,
and either accept or reject the new parameters.

� �
1 # Log -Prior Function (assuming exponential priors)

2 log_prior <- function(beta , gamma , lambda_beta = 1, lambda_gamma = 1) {

3 dexp(beta , rate = lambda_beta , log = TRUE) +

4 dexp(gamma , rate = lambda_gamma , log = TRUE)

5 }

6

7

8 # Metropolis -Hastings Algorithm

9 MH_sampler_SIS <- function(data , n_iter , beta_init , gamma_init ,

10 lambda_beta , lambda_gamma , proposal_sd) {

11

12 # Initialize current parameters

13 beta <- beta_init

14 gamma <- gamma_init

15 samples <- matrix(NA , n_iter , 2)

16

17 # Counter for accepted proposals

18 accepted_count <- 0

19

20 for (i in 1:n_iter) {

21 beta_prop <- rnorm(1, beta , proposal_sd)

22 gamma_prop <- rnorm(1, gamma , proposal_sd)

23

24 if (beta_prop > 0 && gamma_prop > 0) {

25 loglik_curr <- loglik_SIS(c(beta , gamma), data)

26 loglik_prop <- loglik_SIS(c(beta_prop , gamma_prop), data)

27

28 logprior_curr <- log_prior(beta , gamma , lambda_beta ,

29 lambda_gamma)

30 logprior_prop <- log_prior(beta_prop , gamma_prop , lambda_beta ,

31 lambda_gamma)

32

33 log_accept_ratio <- (loglik_prop + logprior_prop) -

34 (loglik_curr + logprior_curr)

35

36 if (log(runif (1)) < log_accept_ratio) {

37 # accept

38 beta <- beta_prop

39 gamma <- gamma_prop

40 accepted_count <- accepted_count + 1

41 }

42 }

43

44 # Store the current (accepted or re-used) parameters in the chain

45 samples[i,] <- c(beta , gamma)

46 }

47

48 cat("Acceptance Rate:", accepted_count / n_iter , "\n")

49

50 colnames(samples) <- c("beta", "gamma")

51 return(as.data.frame(samples))

52 }
 	
12

4.3 Running the MH Sampler

Now, let’s run the Metropolis-Hastings algorithm to generate samples from the posterior
distribution of our β and γ parameters.

� �
1 # True parameters (these are what we want to estimate)

2 true_beta <- 0.3

3 true_gamma <- 0.1

4

5 # Initial conditions and time for data generation

6 N_data <- 1000

7 I0_data <- 5

8 S0_data <- N_data - I0_data

9 T_data <- 150

10

11 # Simulate the true SIS stochastic model to generate observed data

12 set.seed (123) # For reproducibility

13 observed_data <- simulate_SIS(N = N_data , beta = true_beta ,

14 gamma = true_gamma , I0 = I0_data , T = T_data)

15

16

17 # Run the MH sampler

18 mh_chain <- MH_sampler_SIS(data = observed_data ,

19 n_iter = 10000 , beta_init = 0.2, gamma_init = 0.2,

20 lambda_beta = 1, lambda_gamma = 1, proposal_sd = 0.01)
 	
4.4 Analyzing MCMC Output

It’s crucial to analyze the MCMC chain to ensure it has converged and is sampling effec-
tively.

� �
1 # Discard burn -in period (e.g., first 10% of iterations)

2 burn_in <- n_iter * 0.1

3 mh_chain_post_burnin <- mh_chain [-(1: burn_in),]

4

5 #install.packages ("coda")

6 library("coda")

7

8 # Convert to ’mcmc ’ object for coda package functions

9 mcmc_object <- as.mcmc(mh_chain_post_burnin)

10

11 # 1. Trace Plots: Show the values of parameters over iterations.

12 # Should look like "fuzzy caterpillars ".

13 plot(mcmc_object)

14

15 # 2. Summary Statistics: Mean , median , credible intervals

16 # (similar to confidence intervals).

17 summary(mcmc_object)

18

19 # 3. Autocorrelation Plots: Show correlation between

20 # samples at different lags. Should drop quickly.

21 autocorr.plot(mcmc_object)

22

23 # 4. Effective Sample Size (ESS): How many independent samples you

13

24 # effectively have. Higher is better.

25 effectiveSize(mcmc_object)

26

27 # Compare MH estimates (mean of posterior) with MLE and true values

28 cat("\nMH Posterior Means:\n")

29 print(colMeans(mh_chain_post_burnin))

30 cat("\nMLE Estimates :\n")

31 print(mle_result$par)
32 cat("\nTrue Parameters :\n")

33 print(c(beta = true_beta , gamma = true_gamma))
 	
4.5 Student Activities for MH:

1. Multiple Chains:

• It’s good practice to run multiple independent MCMC chains from different
starting points to check for convergence.

• Run the MH sampler SIS function multiple times (e.g., 2-3 times), each with a
different set.seed() and different initial parameters, beta init and gamma init.

• Combine the chains (e.g., using rbind or mcmc.list from coda) and plot them
together using plot(as.mcmc(combined chain)).

• Comment: Do the chains converge to the same region of the parameter
space? What does this tell you about the reliability of your MCMC results
and whether the algorithm has found the true posterior?

2. Different proposal distributions:

• Experiment with proposal sd values (e.g., c(0.001, 0.0005) for smaller
steps, or c(0.05, 0.02) for larger steps).

• Observe the “Acceptance Rate” printed by the function.

• Comment: How does the proposal sd affect the acceptance rate? What
happens to the trace plots and autocorrelation plots if the acceptance rate is
very low or very high? (Aim for an acceptance rate between 20-50%).

3. Comparing MLE and MH:

• Compare the point estimates from MLE (mle result$par) with the mean/me-
dian of the posterior distributions from MH (colMeans(mh chain post burnin)

or summary(mcmc object)).

• Comment: Are they similar? What are the advantages of having a full
posterior distribution (from MH) compared to a single point estimate (from
MLE) when dealing with stochastic models and uncertainty? (Hint: Think
about how each method quantifies or represents uncertainty).

Experiment with the code and the suggested activities to deepen your understanding!!!

14

	Getting started with R (for students new to R)
	Install R and RStudio
	RStudio interface (Brief Overview)
	Basic R syntax
	Installing and loading packages
	Basic plotting

	The stochastic SIS model
	Model events and probabilities
	Implementing the stochastic SIS model in R
	Simulating the stochastic SIS model
	Student activity:

	Maximum Likelihood Estimation (MLE) for stochastic SIS
	Generating Synthetic Data
	Defining the log likelihood function for SIS
	Performing MLE using optim
	Repeated MLE estimation and variability
	Student Activities for MLE:

	Metropolis-Hastings (MH) for stochastic SIS
	Introduction to Bayesian Inference (Recap)
	Implementing the MH Algorithm
	Running the MH Sampler
	Analyzing MCMC Output
	Student Activities for MH:

